

Better decisions for more effective emergency medical care

The case of the Portuguese Emergency Medical Service

Inês Marques

Centre for Management Studies, Instituto Superior Técnico

ines.marques.p@tecnico.ulisboa.pt

Bochum, Nov 22, 2018

OpLog brief introduction

Emergency medical services (EMSs) and the Portuguese EMS provider (INEM)

- Ambulance dispatching and relocation
 - Integrated staff scheduling

Final remarks

OpLog brief introduction

Emergency medical services (EMSs) and the Portuguese EMS provider (INEM)

Final remarks

Short background

OpLog main research pillars

Provide support to organizations by developing OR-based methods to inform decision-making.

TÉCNICO LISBOA

OpLog develops innovative, theoretically sound and demand-driven research ...

... in a closed collaboration with national and international:

- Industrial and Service Organizations
- Academic Partners

- economic
- environmental and

- social

drivers

OpLog team

Coordinator Ana Póvoa

Senior Researchers

Susana Relvas Ana Carvalho Tânia Pinto Varela Tânia Ramos Inês Marques

External Research Affiliates

Teresa Grilo Leão Fernandes Jorge Vicente

Post Docs

Bruna Mota Miguel Vieira + I

15 PhD Candidates 40+ Ongoing MSc Students

Bochum, Nov 22, 2018

OpLog brief introduction

Emergency medical services (EMSs) and the Portuguese EMS provider (INEM)

Integrated staff scheduling

Final remarks

What is an EMS?

"a comprehensive system which provides the arrangements of personnel, facilities and equipment for the effective, coordinated and timely delivery of health and safety services to victims of sudden illness or injury"

Simulation, Optimization, Data Science and Artificial Intelligence (AI)

Improve decision making – more effective, coordinated and timely health delivery

Current international EMS systems evolved from two main models

Franco-German model Stay and stabilize

Main idea

Main provider

Patients treated

Destination for transported patients

Why is EMS such an important health service?

- Main goal: provide timely basic medical care to victims or emergencies
- **Prevents** needless mortality or long-term morbidity
- Corresponds to the **pre hospital assistance**
- Has to manage and mobilize several resources
- Aims to serve as many emergencies as possible with an effective response

11

EMS environment

- Sub zones: Basic subdivisions of the region
- **Hospitals**: Health care facility that provides patient treatment
- Ambulance Bases: Structures or areas for storage of ambulances
 - Depots: A base where ambulances start and end their shift
 - Potential standby sites: Sites where ambulances can park during the day while waiting for emergencies
- Emergency points: Location where an emergency occurs

Open questions

- How many?
- Where?
- When?
- How severe?

- Where?
- When?

- How many?
- Where?
- Should standby sites be used?

Decision-making process

INEM: Resources and operational results in the media (August 2018, Público)

SAÚDE Presidente do INEM diz que falta de técnicos não afecta

socorro 27 de Agosto de 2018

9

Sindicato pede abertura de mais concursos para técnicos de emergência pré-hospitalar

RITA MAROLIES COSTA

INEM

INEM prevê renovar até 2021 frota de ambulâncias

26 de Agosto de 2018 Pt 2

INEM

SAÚDE

INEM demorou cerca de 30 segundos a atender chamadas nos primeiros sete meses do ano ANA MAIA 10 de Agosto de 2018

	0 -		sto de 2018		1	-		Annual I
Atividade	2013	2014	2015	2016	2017	Var 2017/201	16	
Notícias Setor da saúde	102 203	148 469		120 139 4%	171 521	51 382	43%	
Notícias c/ referência INEM (imprensa, televisão, rádio e internet)	15 061	22 341	19 203	20 940	23 967 Daily	^{3 027} / average:	14% 66	in rita

Some figures 2017

Data2Help: Data Science for Optimization of EMSs

Data2Help and the Decision-making process

Agenda

OpLog brief introduction

Emergency medical services (EMSs) and the Portuguese EMS provider (INEM)

Ambulance dispatching and relocation

Integrated staff scheduling
Final remarks

Inês Marques

- Motivation
- Response time is (sometimes) too high affecting patients' health state
- Effective and efficient emergency response is an issue that concerns society
- Emergency decisions are still based on staff common sense
- Aim: develop optimization tools to dispatch and relocate ambulances
 - analyze the importance of changing the current policies at INEM (Dispatch closest available ambulance and relocate ambulances to home base)

Decision 1

Dispatching

problem

Ambulance dispatching and relocation

Decisions

Available ambulance at a hospital

Available ambulance at an emergency

- Busy ambulance
- Current emergency
- Previous emergency
- ---> Route previously defined
- Sub-zone limit

To which base the available ambulances go after completing the service?

Which (available) ambulance goes to

each actual emergency point?

Decision 3 Relocation problem II

Are additional relocations between bases needed?

Bochum, Nov 22, 201

Main goal: ensure a good system coverage to provide quick response times to current and future emergencies

Dynamic problem: coverage

How to analyze system coverage?

- **Preparedness** evaluates the ability to serve patients now and in the future
- *Time-preparedness metric*
 - Preparedness for a fleet of available ambulances in the area under study
 - Depends on the historical number of emergency calls and on the travel time
 - increases with available ambulances closer to a sub-zone
 - decreases with the call frequency and the travel time at each moment

MILP model

 $y_{i\ell} = \langle$

if available ambulance i is dispatched to emergency jotherwise

if available ambulance i is assigned to base l
otherwise

MILP model

System capability to handle new emergencies in the future

→ Min system response time for future emergencies

Response time for current emergencies

MILP model

× •	Uncovered emergency definition	s.t.: $u_j = 1 - \sum_{i \in A} x_{ij}$, $\forall j \in E$
	Change target definition	$\begin{aligned} z_i &= 1 - \left(y_{ib_i} + \sum_{j \in E} x_{ij} \right) \ , \ \forall \ i \in (A^B \cup A^R) \\ z_i &= 0 \ , \ \forall \ i \in \{A^B \cup A^R\} \setminus \{A^{Target}\} \end{aligned}$
	Maximum number of changes in target bases	$\sum_{i \in A^{Target}} z_i \le Target^{MAX}$
	Each available ambulance is dispatched to an emergency or assigned to a base	$\sum_{j \in E} x_{ij} + \sum_{l \in B} y_{il} = 1 \ \forall i \in A$ $\sum_{i \in A} x_{ij} \le 1 \ , \ \forall j \in E$

MILP model

5	Maximum response time	$\sigma_j + d_{ij} \ x_{ij} \le R^{MAX} + r_{ij} \ , \ \forall \ i \in A \ , \ j \in E$
	Whether a base is empty of ambulances or not	$v_l \leq \sum_{i \in A} y_{il} \leq A \ v_l \ , \ \forall \ l \in B$
5 -	Minimum time to reach a sub-zone	$\begin{aligned} d_{lq} \ \delta_{lq}^{min} &\leq d_{l'q} + M^{Travel \ time} \ (1 - v_{l'}) \ , \ \forall \ l \ , \ l' \in B \ , \ q \in Z \\ \delta_{lq}^{min} &\leq v_l \ , \ \forall \ l \in B \ , \ q \in Z \end{aligned}$
	Defines the base that reaches the sub-zone in minimum time or no ambulance at all	$\sum_{l \in B} \delta_{lq}^{min} + w_q = 1 \ , \ \forall \ q \in Z$
	Binary-domain and real-domain variables	$\begin{aligned} x_{ij}, y_{il}, u_j, v_l, z_{i'}, w_q, \delta_{lq}^{min} \in \{0, 1\}, \\ \forall \ i \in A, i' \in \{A^B \cup A^R\}, \ j \in E, \ l \in B, \ q \in Z \\ r_{ij} \ge 0 \ , \ \forall \ i \in A \ , \ j \in E \end{aligned}$

Heuristic: overview

needs to be solved within few seconds in order to ensure a quick response time can be solved in slightly more time (not too much) as these are not immediate critical decisions

Phase 1: Dispatching problem

Phase 1

Algorithm 1 Heuristic phase 1 - dispatching decisions

- 1: for all emergencies $e \in E^*$ do
- 2: Calculate $p_{(A \setminus i)}^{(t+1)}$
- 3: Dispatch available ambulance i' such that $i' = argmax_{i \in A} \frac{\left[p_{(A \setminus i)}^{(t+1)}\right]^{\alpha}}{1+d_{ie}}$ 4: end for
- 5: * Emergencies are analyzed by descending order of the corresponding waiting time, i.e. emergencies that occurred earlier are considered first.

 α : calibration factor that weights on preparedness (closest-policy if $\alpha = 0$)

Phase 2: Relocation problem

problem II

Algorithm 2 Heuristic phase 2 - relocation decisions

- 1: Define S as the master solution with an undefined initial cost, $Cost_S = +\infty$
- 2: Define A^{Fixed} as the set of available ambulances fixed in $S, A^{Fixed} = \emptyset$

3: while
$$[(A - A^{Fixed}) \neq \emptyset$$
 and

- 4: (number of ambulances that changed target base $\leq Target^{MAX}$ or there are ambulances at an emergency or at a hospital to return to a base)] do
- 5: for $a \in (A A^{Fixed})$ do
 - Apply pilot heuristic (Algorithm 3) to obtain $Cost_a$ by fixing a Update master solution S if $Cost_a < Cost_S$
- 8: end for
- 9: end while

6:

7:

- A pilot heuristic is used to generate and compare solutions (tempered greedy meta-heuristic - look-ahead method)
- A master solution is extended at the end of each iteration with the best pilot solution

Phase 2: Relocation problem

	Algorithm 3 Pilot heuristic
Decision 1 Dispatching problem	 Initial ambulance: a while [there are available ambulances to analyze and (number of ambulances that changed target base ≤ Target^{MAX} or there are ambulances at an emergency or at a hospital to return to a base)] do
Phase 2	 4: i) Choose base b to assign ambulance a 5: if ambulance a is at an emergency or at a hospital then 6: Choose between all bases b ∈ B, the one that maximizes p_A^(t+1) 7: else 8: Choose between maintaining the current assigned base or changing to the closest base, the one that maximizes p_A^(t+1) 9: end if
Relocation problem I Decision 3 Relocation problem II	 10: ii) Choose the following ambulance a* to analyze 11: a* is the furthest available ambulance from a 12: a = a* 13: iii) Update solution cost and other info 14: end while ilot heuristic: tempered greedy meta-heuristic (look-ahead method)

Inês Marques

Tests: INEM data

Lisbon region divided into sub-zones

Number of emergencies per hour in Lisbon (2nd half of 2016)

Tests: Instances and scenarios

Input data (INEM case study)

- Ambulances: 37
- Ambulance bases: 19
- Hospitals: 3
- Sub-zones: 24
- Maximum response time: 900 seconds

Rolling-horizon scenario

- 1 day: 288 time periods (1 time period = 5 minutes)
- Random number of emergencies with random location at each time period
- 20% of the emergencies does not require hospital-care
- Emergency service takes between 10-40 minutes
- 1 hour is required to be available for a change to a different target base

50 instances tested

Tests: Strategies

Results: preparedness

Results: response time

Average response time

There is no consistent pattern

Ambulance dispatching and relocation

Results: extra time

– P/AB - Heuristic ····• C/HB - MIP

Bochum, Nov 22, 2018

Inês Marques

•••••• P/AB - MIP

Ambulance dispatching and relocation Results: CPU time

P/AB–MIP provides an optimal Average CPU time solution in less than 0.1 second 0.20 P/AB–H quicker when the system \checkmark 0.18 is crowded 0.16 0.14 U.12 (seconds) 0.10 0.08 0.06 0.04 0.02 0.00 TIBW Time instant C/HB - Heuristic P/AB - Heuristic ····• C/HB - MIP ----- P/AB - MIP

Bochum, Nov 22, 2018

ÉCNICO

ISROA

Inês Marques Intel® Core™ i7-5500U CPU @ 2.40GHz, 8 GB RAM

Agenda

OpLog brief introduction

Emergency medical services (EMSs) and the Portuguese EMS provider (INEM)

Integrated staff scheduling Final remarks

- Quality of the schedule impacts the quality of the emergency care
- Employee preferences is directly related to on-job performance
- Timetables are still manually constructed
- Few research in staff scheduling in EMSs
- > Aim: novel solution approach and automated scheduling tool
 - Provide staff schedules in significantly less time
 - Improve quality and transparency of the schedules
 - Increase employee perception about fairness
 - Focus on functionality of the services and equity among the staff

Integrated staff scheduling Problem statement

- Services operate 24/7
- Fixed shifts

- Required personnel coverage for each task, day and shift
- Legal regulations
- Organizational and contractual issues
- Integrated staff scheduling for a set of services that share the same workforce

Integrated staff scheduling

Problem statement

MASTER

- 1. Required skills for each assigned task
- 2. Minimum rest between working shifts
- 3. Maximum number of consecutive working days
- 4. Maximum number of consecutive days off
- 5. Minimum number of Sundays off
- 6. Minimum number of each shift type
- Soft constraints
 - 1. Coverage requirement (understaffing and overstaffing allowed)
 - 2. Full weekends off
 - 3. Working time equal to contract hours
 - 4. Assign to tasks of own team as much as possible

Functionality of services

SUBPROBLEMS

Equity among staff

Bochum, Nov 22, 2018

Integrated staff **Results: case study at INEM** scheduling

TÉCNICO

LISBOA

San Vic

de Alcá

Ca

9

Oliv

Arronches

A6

Alandroal

Integrated staff scheduling Results: case study at INEM

	CODU		EVs						
Task type	CODU Shift Responsible	CODU Task	AEM Driver	AEM Team Responsible	SIV Task	TIP Task	UMIPE Task	MEM Task	
Task duration	8 hours								

- Overall dataset
 - 289 people
 - 22 teams (5 CODU, 17 EVs)
 - 61 tasks (10 CODU, 51 EVs)
 - 28 days (3 shifts per day)

Integrated staff **Results: test sets**

- Start from INEM base case (289 people, 61 tasks)
- Change certain parameter

scheduling

- Adjust demands and other requirements
 - 1. TestMD: 56 days instead of 28
 - 2. TestMP: 417 people instead of 289
 - 3. TestLS: 103 tasks instead of 61 (to reduce symmetry)
 - 4. TestHS: every person can do every task (to maximize symmetry)

+ 15 randomly generated instances

Integrated staff scheduling

Results

Instance	stance LP relaxation		CPLEX IP		Diving B		VNDS		
	Time (s)	Opt.	Obj.	Gap	Obj.	Gap	Avg. obj.	SD obj.	Avg. gap
INEM	180	26,442	1,994,304	98.67	76,556	65.46	27,024	42	2.15
INEM MD	572	50,506	2,255,012	97.76	367,952	86.27	51,488	55	1.91
INEM MP	272	39,218	2,821,106	98.53	100,314	60.91	40,797	16	3.87
INEM LS	372	41,386	3,698,754	98.94	191,966	78.44	42,452	136	2.51
INEM HS	304	25,128	441,896	94.31	100,720	75.05	26,062	351	3.58
Test01	505	19,892	253,624	92.16	58,638	66.08	20,389	20	2.44
Test02	1557	61,949	737,112	91.60	298,520	79.25	74,090	6	16.39
Test03	638	47,486	417,742	88.63	214,088	77.82	53,113	191	10.59
Test04	1227	55,322	557,332	90.07	307,248	81.99	61,845	7	10.55
Test05	829	26,711	251,460	89.38	81,446	67.20	27,465	31	2.74
Test06	375	15,140	3,887,199	99.61	32,247	53.05	15,542	4	2.59
Test07	1596	18,337	1,251,654	98.53	125,758	85.42	18,799	115	2.46
Test08	251	10,386	89,688	88.42	41,824	75.17	10,462	0	0.73
Test09	1852	38,398	1,251,960	96.93	121,378	68.36	41,258	21	6.93
Test10	2573	25,120	5,157,815	99.51	110,027	77.17	25,604	195	1.89
Test11	3254	22,065	1,454,516	98.48	144,192	84.70	23,269	20	5.18
Test12	689	15,742	4,022,071	99.61	45,007	65.02	16,501	23	4.60
Test13	563	6452	883,480	99.27	68,164	90.53	6944	66	7.09
Test14	626	14,193	4,580,454	99.69	52,846	73.14	14,625	4	2.95
Test15	659	10,944	2,581,719	99.58	42,821	74.44	11,408	7	4.07

Good performance of the VNDS heuristic

- Gaps of 0.7 to 16.4 percent w.r.t. LP lowerbound
- Within 1 hour CPU

Further required developments...

- Extend the scheduling tool
 - Holidays
 - Staff preferences
 - Requests for specific days-off and days-on
 - Uncertainty on unexpected absences
 - Changes between staff members
- Rescheduling in the course of the planning period

Agenda

OpLog brief introduction

Emergency medical services (EMSs) and the Portuguese EMS provider (INEM)

Final remarks

+**Real life features** Uncertainty

Bochum.

Conclusions and Future research

Integrated staff scheduling

Ambulance dispatching and relocation

> Ambulance location

Vermuyten H, Rosa JN, Marques I, Beliën J, Barbosa-Póvoa A (2018). Integrated staff scheduling at a medical emergency service: an optimization approach. Expert Systems with Applications 112: 62-76.

Carvalho AS, Captivo ME, Marques I. Integrating the ambulance dispatching and relocation problems to maximize system's preparedness. Submitted.

Project 2019-2021 - DSAIPA/AI/0044/2018 Data2Help: Data Science for Optimization of Emergency Medical Services Goal: To provide INEM with new tools to improve operational results by optimizing resource assignment, resulting in an improved and faster response to medical emergencies in Portugal.

KU LEUVEN

Research teams and partners

i.

ii.

Post-Doc position announcement

ImproveOR project

- Developing comprehensive and innovative methods to improve operating room responsiveness to increasing surgical demand and to better coordinate surgical capacity and demand. Decision support tools are to be developed combining optimization approaches (based on multi-objective mathematical programming models, heuristics and simulation) to assist resource capacity planning decisions in the operating room, with structured participatory approaches to capture stakeholders' views and preferences regarding the surgical patient flows and the planning and scheduling of surgeries. The developed methods will be tested and validated in two central hospitals of the Portuguese National Health Service.
 - Support in the management of the ImproveOR: Building Decision Support Tools for Improved Operating Room Management project and in the scientific supervision of masters and doctoral students associated with the different research tasks to be developed in the project.

Monthly remuneration: 2,128.34€

Duration: 3 years

Candidates with degree abroad:

Recognition of the degree by the Portuguese Directorate-General for Higher Education

To appear through:

ORAHS, APDIO, other OR societies

Better decisions for more effective emergency medical care

The case of the Portuguese Emergency Medical Service

Inês Marques

Centre for Management Studies, Instituto Superior Técnico

ines.marques.p@tecnico.ulisboa.pt

Bochum, Nov 22, 2018